(a) Solve
$$y'' + 3y' + 2y = 6$$
.
Step 1: Solve homogeneous equation $y'' + 3y' + 2y = D$.
The characteristic equation is $r^2 + 3r + 2 = 0$
Which has roots:
 $r = -3 \pm \sqrt{3^2 - 4(1)(2)} = -3 \pm \sqrt{1} = -3 \pm 1$, $-3 - 1$
 $2(1)$
 $r = -1, -2$
Thus, $y_h = c_1 e^x + c_2 e^{2x}$
Step 2: Find a particular solution y_p to
 $y'' + 3y' + 2y = 6$.
Guess $y_p = A$.
Then, $y_p' = 0$
 $y_p'' = 0$.
Plug these into $y'' + 3y' + 2y = 6$ to get
 $0 + 3(0) + 2A = 6$.
So $A = 3$.
Thus, $y_p = 3$
Step 3: The general solution is
 $y = y_h + y_p = c_1 e^{-x} + c_2 e^{-2x} + 3$

Step 1: Solve homogeneous eqn.
$$y'' - 10y' + 25y = 0$$
.
The characteristic equation is $r^2 - (0r + 25 = 0)$
which has roots
 $r = \frac{10 \pm \sqrt{(-10)^2 - 4(1)(25)}}{2(1)} = \frac{10 \pm \sqrt{0}}{2} = 5$

Thus, $y_h = c_1 e^{SX} + c_2 \times e^{SX}$

Step 2: Find a particular solution
$$y_p$$
 to $y'' - 10y' + 25y = 30x + 3$.

Guess:
$$y_p = Ax + B$$
.
So, $y_{p'} = A$
 $y_{p''} = O$
Plug this into $y'' - loy' + 25y = 30x + 3$ to get
 $-loA + 25(Ax + B) = 30x + 3$.
Region left - hand side to get
 $25A \times t(-loA + 25B) = 30 \times t 3$.

This gives the system

25A = 30
-10 A+25B = 3
Thus,
$$A = \frac{32}{25} = \frac{6}{5}$$
.
And $B = \frac{3}{25} + \frac{10}{25}A = \frac{3}{25} + \frac{10}{25} \cdot \frac{6}{5} = \frac{15}{25} = \frac{3}{5}$
So, $y_p = Ax + B = \frac{6}{5}x + \frac{3}{5}$

Step 3: The general solution to

$$y'' - loy' + 2sy = 30x + 3$$
 is thus
 $y = y_h + y_p = c_1 e^{5x} + c_2 x e^{5x} + \frac{6}{5} x + \frac{3}{5}$

$$\begin{split} (D(c)) & \text{Solve } y'' + 4y' + 4y = 4x^2 \cdot 8x \\ \\ \hline \text{Step (:)} & \text{Solve the homogeneous eqn. } y'' + 4y' + 4y = 0 \\ \\ \text{which has characteristic eqn. } r^2 + 4r + 4 = 0 \\ \\ \hline \text{The (oolds are} \\ r = -4 \pm \sqrt{4^2 + 4(1)(4)} = -4 \pm 50 \\ r = -2 \\ \hline \text{Thus,} \\ \hline y_h = c_1 e^{-2x} + c_2 \times e^{-2x} \\ \hline \text{Thus,} \\ \hline y_h = c_1 e^{-2x} + c_2 \times e^{-2x} \\ \hline \text{Step 2: Find a particular solution to} \\ y'' + 4y' + 4y = 4x^2 - 8x \\ \hline \text{Guess: } y_P = Ax^2 + Bx + C \\ \\ \text{We yet } y_P' = 2A \\ \hline y_P'' = 2A \\ \hline \text{Hug this into } 4y'' + 4y' + 4y = 4x^2 - 8x \\ \hline \text{Plug this into } 4y'' + 4y' + 4y = 4x^2 - 8x \\ \hline \text{Realfange the left-hand side to get} \\ \end{aligned}$$

 $4Ax^{2} + (8A + 4B)x + (2A + 4B + 4C) = 4x^{2} - 8x + 0$ So we get 4A = 42 8A+4B = -82A+4B+4C=03 Plug into ② to get: 8(1)+4B=-8→ B=-4 () gives A=1. Plug into ③ to get; Z(1)+4(-4)+4C=0 → 4C=14 -> C = 14 = 7 $y_p = A \chi^2 + B \chi + C = \chi^2 - 4 \chi + \frac{2}{2}$ Thus, Step 3: The general solution to 4y"+4y+4y=4x-8x is $y = y_h + y_p = c_1 e^{-2x} + c_2 x e^{-2x} + x^2 - 4x + \frac{7}{2}$

(i)(d) Solve
$$y'' + 3y' - 10y = 6e^{4x}$$

Step 1'. Solve the homogeneous equation
 $y'' + 3y' - 10y = 0$ with characteristic
polynomial $r^{2} + 3r - 10 = 0$ which has roots
 $polynomial r^{2} + 3r - 10 = 0$ which has roots
 $r = -3 \pm \sqrt{3^{2} - 4(1)(-10)} = -3 \pm \sqrt{49} = -3 \pm 7$

$$\frac{2(1)}{2} = -\frac{3+7}{2}, -\frac{3-7}{2} = 2, -5$$

Thus,

$$y_h = c_1 e_1 + c_2 e_2$$

Step 2: Guess a particular solution
$$y_p$$

to $y'' + 3y' + 10y = 6e^{4x}$.
Guess: $y_p = Ae^{4x}$
 $y'_p = 4Ae^{4x}$
 $y'_p = 16Ae^{4x}$
Plug these into $y'' + 3y' + 10y = 6e^{4x}$ to get

$$(16 \text{ A e}^{4\times}) + 3(4 \text{ A e}^{4\times}) + 10(\text{ A e}^{4\times}) = 6e^{4\times}$$

This becomes $38 \text{ A e}^{4\times} = 6e^{4\times}$

Thus,
$$38A = 6$$
.
So, $A = \frac{6}{38} = \frac{3}{19}$
So, $Y_{P} = \frac{3}{19}e^{4x}$

Step 3: The general solution to

$$y'' + 3y' - 10y = 6e^{4x}$$
 is
 $y = y_h + y_p = c_1e^{2x} + c_2e^{5x} + \frac{3}{19}e^{4x}$

(1)(e) Solve
$$4y'' - 4y' - 3y = \cos(2x)$$

Step 1: Solve the homogeneous eqn. $4y'' - 4y' - 3y = 0$
The characteristic eqn is $4r^2 - 4r - 3 = 0$.
The roots are
 $r = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(4)(-3)}}{2(4)} = \frac{4 \pm \sqrt{64}}{8} = \frac{4\pm 8}{8}$
 $= \frac{4\pm 8}{8}, \frac{4-8}{8} = \frac{3}{2}, -\frac{1}{2}$
Thus,
 $y_h = c_1 e^{\frac{3}{2}x} + c_2 e^{\frac{1}{2}x}$
Step 2: Find a particular solution y_p to
 $4y'' - 4y' - 3y = \cos(2x)$.
Guess: $y_p = A \cos(2x) + B \sin(2x)$
Then, $y_p' = -2A \sin(2x) + 2B \cos(2x)$
 $y_p'' = -4A \cos(2x) - 4B \sin(2x)$
Plugging these into $4y'' - 4y' - 3y = \cos(2x)$ gives
 $-16A \cos(2x) - 16B \sin(2x) + 8A \sin(2x) = \cos(2x)$.

Combine like terms on the left-hand side to get

$$(-19A-8B)\cos(2x) + (8A-19B)\sin(2x) = \cos(2x)$$

(2) gives
$$A = \frac{19}{8}B$$
.
Plug this into (1) to get $-19(\frac{19}{8}B) - 8B = 1$.
This gives $-\frac{361 - 64}{8}B = 1$.

So,
$$B = \frac{-8}{425}$$

Thus, $A = \frac{19}{8}B = \frac{19}{8}\left(\frac{-8}{425}\right) = \frac{-19}{425}$
So, $y_p = -\frac{19}{425}\cos(2x) - \frac{8}{425}\sin(2x)$

Step 3: The general solution to
$$4y'-4y'-3y=cos(2x)$$

is

$$y = y_h + y_p = c_1 e^{\frac{\pi}{2}} + c_2 e^{\frac{\pi}{2}} - \frac{14}{425} \cos(2x) - \frac{\pi}{425} \sin(2x)$$

$$\begin{array}{l} (f) \quad \int \sigma(Jz \quad y'' + 3y = x e^{3x}) \\ (f) \quad \int \sigma(Jz \quad y'' + 3y = x e^{3x}) \\ (f) \quad \int \sigma(Jz \quad y'' + 3y = 0) \\ (f) \quad \int \sigma(Jz \quad y' + 3y = 0) \\ (f) \quad \int \sigma(Jz \quad y'$$

Plugging these into y"+3y = xe3x gives (6A+9B) e + 9A x e + 3A x e + 3B e = x e 3x 340 Yp" + Combining like terms gives $(6A+12B)e^{3x}+(12A)xe^{3x}=xe^{3x}$ So we get |ZA = | () 6A + |ZB = 0 (2) (2) gives $B = \frac{-6}{12}A = \frac{-1}{2}(\frac{1}{12}) = -\frac{1}{2}4$ Dgijes A=1/12 Thus, $y_{g} = (A \times + B)e^{3x} = (\frac{1}{12}x - \frac{1}{24})e^{3x}$ Step 3: The general solution to y"+3y = xe" $y = y_h + y_p = c_1 \cos(\sqrt{3}x) + c_2 \sin(\sqrt{3}x) + (\frac{1}{12}x - \frac{1}{24})e^{3x}$

(2)(a) Solve
$$y''-y'=-3$$

Step 1: Solve the homogeneous eqn $y''y'=0$.
The characteristic eqn is $r^2r=0$
This factors as $r(r-1)=0$.
The roots are $r=0,1$.
Thus,
 $y_h = c_1e^{0x} + c_2e^{x} = c_1 + c_2e^{x}$
Step 2: Find a particular solution y_h to $y''-y'=-3$.
We want to guess $y_p=A$.
However, the constant solution appears in y_h .
So we multiply by x and instead guess
 $y_p = Ax$
Which doesn't occur in y_h .
Then, $y_p' = A$
 $y_p''=0$
Plugging this into $y''-y'=-3$ gives
 $0 - A = -3$
So, $A = 3$.

Thus,
$$y_p = 3x$$
.
Step 3: The general solution to $y''-y'=-3$ is
 $y = y_h + y_p = c_1 + c_2 e^x + 3x$

So we get

$$8Ae^{4x} = 2e^{4x}$$

Thus, $A = \frac{1}{4}$.
So, $y_P = \frac{1}{4} \times e^{4x}$.
Step 3: The general solution to $y'' - 16y = 2e^{4x}$
is
 $y = y_h + y_P = c_1 e^{4x} + c_2 e^{4x} + \frac{1}{4} \times e^{4x}$

(2) (c) Solve
$$y'' + 2y' = 2x + 5 - e^{x}$$
Step 1: Solve the homogeneous eqn $y'' + 2y' = 0$.
The characteristic eqn is $r^{2} + 2r = 0$.
This fuctors as $r(r+2) = 0$.
The costs are $r = 0, -2$.
Thus,
 $y_{h} = c_{1}e^{0x} + c_{2}e^{2x} = c_{1} + c_{2}e^{-2x}$
Step 2: Find a particular solution y_{t} to
 $y'' + 2y' = 2x + 5 - e^{x}$.
Guess: $y_{p} = Ax^{2} + Bx + Ce^{x}$
 $y_{p}'' = zA + Ce^{x}$
Plugging this into $y'' + 2y' = 2x + 5 - e^{x}$ gives
ZA+ Ce^x + 4Ax + 2B + 2Ce^x = 2x + 5 - e^{x}
 $zA + Ce^{x} + 4Ax + 2B + 2Ce^{x} = 2x + 5 - e^{x}$
Combining like terms gives

$$4A = 2$$

 $2A+2B = 5$
 $3C = -1$
3

50,

(1) gives
$$A = \frac{1}{2}$$
.
(2) gives $B = \frac{2}{2} - A = \frac{2}{2} - \frac{1}{2} = Z$
(3) gives $C = -\frac{1}{3}$.
Thus, $y_p = \frac{1}{2}x^2 + 2x - \frac{1}{3}e^x$

Step 3: The general solution to

$$y'' + 2y' = 2x + 5 - e^{x}$$
 is
 $y'' = y_h + y_p = c_1 + c_2 e^{-2x} + \frac{1}{2}x^2 + 2x - \frac{1}{3}e^{x}$

(2)(c) Solve
$$y''+2y' = 2x+5-e^{-2x}$$

Step 1: Solve the homogeneous eqn $y''+2y'=0$.
The characteristic eqn is $r^2+2r=0$.
This fuctors as $r(r+2)=0$.
The roots are $r=0,-2$.
Thus,
 $y_h = c_1 e^{0x} + c_2 e^{2x} = c_1 + c_2 e^{-2x}$

Step 2: Find a particular solution
$$y_i$$
 to
 $y''_i + 2y' = 2x + 5 - e^{-2x}$
Guess: $y_p = Ax^2 + Bx + Cxe^{-2x}$
 $y_p' = 2Axt B + Ce^{2x} - 2Cxe^{-2x}$
 $y_p'' = 2A - 2Ce^{2x} - 2Ce^{-2x} + 4Cxe^{-2x}$
 $y_p'' = 2A - 2Ce^{2x} + 4Cxe^{-2x}$
 $y_p'' = 2A - 2Ce^{2x} + 4Cxe^{-2x}$
 $y_p'' = 2A - 2Ce^{2x} + 4Cxe^{-2x}$
 $y_p'' = 2X + 5 - e^{-2x}$ we get
 $z - 4Ce^{-2x} + 4Cxe^{-2x} + 4Ax + 2B + 2Ce^{-2x} - 4Cxe^{-2x}$
 $y_p'' = 2x + 5 - e^{-2x}$

Combining like terms on the left-hand side we get

$$4Ax + (2A+2B) - 2Ce^{-2x} = 2x+5 - e^{-2x}$$

So, $4A = 2$ (D)
 $2A+2B = 5$ (E)
 $-2C = -1$ (E)
(D) gives $A = \frac{1}{2}$.
(D) gives $A = \frac{1}{2}$.
(E) gives $B = \frac{1}{2}c - A = \frac{1}{2}c - \frac{1}{2}c = \frac{1}{2}$.
(E) gives $C = \frac{1}{2}$.
Thus, $y_{P} = \frac{1}{2}x^{2} + 2x + \frac{1}{2}xe^{-2x}$
Step 3: The general solution to
 $y'' + 2y' = 2x + 5 - e^{2x}$ is
 $y'' = y_{h} + y_{P} = c_{1} + c_{2}e^{-2x} + \frac{1}{2}xe^{-2x}$